SECTION 51-3 QUESTIONS FEEDBACK MECHANISMS

DEFINE THE FOLLOWING TERMS

- 1. antagonistic hormones
- 2. feedback mechanism
- 3. negative feedback
- 4. positive feedback

ANALYSIS- Look at the two graphs (Figure 51-11) on p. 1039 and answer the following questions.

- 5. In the graph labeled "Negative Feedback", substance B is the initial step in the series of events that causes production of substance A. What happens as the concentration of A increases?
- 6. In the graph labeled "Positive Feedback", initial production of B causes production of A. What happens now as the concentration of A increases?

Look at the graph on p. 1043. Refer to the information on p. 1036, if necessary.

- 7. Which hormones are primarily responsible for the changes in blood glucose levels shown on the graph?
- 8. Identify and explain the type of feedback mechanism that enables the body to adjust the blood glucose level after eating.

MULTIPLE CHOICE

- 9. The endocrine system
 - a. Affects only the nervous system
 - b. Helps maintain homeostasis
 - c. Affects only the reproductive system
 - d. Primarily uses positive feedback
- 10. Homeostasis requires the coordination of
 - a. Organs
 - b. Cells
 - c. Tissues
 - d. All of the above

- 11. In a negative feedback system, the end product
 - a. Inhibits the first step
 - b. Inhibits the last step
 - c. Stimulates the first step
 - d. Stimulates the last step
- 12. Cells that produce the regulating (initial) hormone or substance in a negative feedback mechanism must
 - a. Be in the pituitary gland
 - b. Secrete steroid hormones
 - c. Have receptors for the hormone being released
 - d. Be linked to the nervous system

SHORT ANSWER

- 13. Why is positive feedback NOT an efficient way to control hormone levels?
- 14. Explain what would happen if hormone concentrations were ONLY regulated by positive feedback mechanisms.

STRUCTURES AND FUNCTIONS Use the figure of a feedback mechanism below to answer the following questions. In the figure, the number of hormone molecules represents the relative blood concentrations of *hormone A* and *hormone B*.

15.	Which cell is defective in Situation 1? What happens to the hormone concentrations as a
	result of this defect?

16.	Which cell is defective in Situation 2? What happens to the hormone concentrations as a
	result of this defect?

HRW material copyrighted under notice appearing earlier in this work